¡Todo es matemática! Máquinas tragamonedas, claves secretas, laberintos, puentes flexibles y moscas que vuelan rápido como trenes.

Estamos rodeados, ¡de números! Fecha de nacimiento, número de documento, id de la computadora, teléfono. Números que repetimos automáticamente y recién comienzan a tener sentido cuando los asociamos y logramos pensar distinto. Ese es el momento en el que aprendemos a educar la intuición y encontramos así soluciones inesperadas. Desde cómo armar un fixture hasta la estrategia adecuada para nunca perder a las damas. Desde cómo mejorar el tránsito en una gran ciudad hasta cómo realizar menos pasos para armar un rompecabezas. Desde cómo elegir una clave bancaria segura hasta cómo adivinar un número o una carta. La lógica matemática envuelve cada uno de nuestros actos cotidianos y es mucho más divertida de lo que imaginábamos.

Prólogo
Enero de 2011

“La isla de los ojos celestes.” ¿Qué? Sí, se me ocurrió que ese podría haber sido el título del libro. No, pensé. Desde que supe que se había resuelto para siempre cómo ganar a las damas, me imaginé que podía ser mejor poner “El fin de las damas”. Pero no, tampoco eso me convencía.

¿Por qué tendrá que llevar un título un libro? ¿No era mejor llamarlo Matemática… ¿estás ahí?? “Sí, pero queremos que este sea distinto”, me dijeron. ¿Distinto en qué? Son las mismas historias de toda la vida. “Sí, pero ahora el desafío es que las historias las agrupes con una suerte de hilo conductor.” Y así las cosas.

Le comenté a Willie (Schavelzon): “A un autor de cuentos no se le pide que encuentre un hilo conductor de sus historias. El que escribe, escribe como le sale. Cada historia es un mundo aparte”. Y mientras tanto, como supongo que nos pasa a todos, me asaltaba el temor de que ya no se me ocurriera nada más, de que ya no tuviera nada más para decir.

Pero no, la matemática ofrece una usina inagotable de pequeñas (y grandes) historias, de problemas que parecían inocentes y tardaron 400 años en resolverse; o, peor, que aún no tienen solución. Historias de gente que tuvo la creatividad suficiente como para entrarle a los problemas desde otros ángulos. Sin embargo, hay algo que no me gusta en este relato: ¿por qué sugerir a quien está leyendo que la única manera de que a alguien se le ocurra la solución a un problema es si está particularmente dotado? ¿Por qué? ¿Por qué no decir la verdad? La verdad es que las personas que resuelven los problemas son personas que piensan como usted y como yo. Claro que no todos tenemos las mismas habilidades para los mismos temas, ni se espera que sea así. Pero sin pasarse horas y horas pensando en algo es muy difícil que a uno se le ocurra la solución de nada. Los momentos de creatividad extrema son pocos y están muy espaciados. Pero sin el esfuerzo constante y cotidiano es muy difícil que encuentren una forma de expresarse. Esa es la escenografía habitual. Las personas que produjeron los quiebres más espectaculares dentro de cada ciencia no estaban todo el día sin hacer nada y de un momento para otro se les ocurrió algo. No. No es así. Es la dedicación diaria y constante la clave. Alguna vez leí que alguien dijo: “Tuve suerte que cuando la inspiración pasó por mi casa, me encontró trabajando”.

Pero mientras dedico tiempo a buscar título, prólogo e hilos conductores, sigo escribiendo. Ya tenemos material no sólo para un libro, sino para más. Pero quiero compartir con usted, con el que está leyendo el libro, algunos de los apuntes y observaciones que me fui haciendo mentalmente mientras agrupaba los problemas.

Antes de avanzar quiero hacer un comentario muy importante (para mí): si usted abre el libro en cualquier página, va a encontrar una historia. No sé cuál, pero una historia. Lo que puedo asegurarle es que no importa que no haya leído nada anterior. Eso no va a ser impedimento para que entienda lo que está leyendo (por supuesto, convendría que empezara a leer al menos esa historia desde el principio), pero imagine que usted está leyendo un libro de cuentos y que eligió una página cualquiera. Bastará con que vaya para atrás hasta encontrar el principio del cuento para estar tranquilo de que va a poder disfrutar de todo sin perderse nada.

Ahora sí, quiero compartir con usted la forma en la que agrupé todo. Y los “porqué”. Los capítulos los llamé “Vida real”, “Estrategias”, “Cartas”, “Azar y probabilidades”, “Aritmética”, “Lógica” y “Miscelánea”.

Empiezo con “Vida real” y sus subcapítulos. “No sé” representa mi verdadero sentir en la vida, la dificultad que tenemos los humanos para exhibirnos vulnerables. La sola idea de aparecer haciendo el ridículo porque uno no entiende lo que cree que debería es el primer eslabón de una cadena de sufrimientos. Por eso es que creo que vale la pena empezar por allí.

“El fin de las damas” tiene un condimento extra: cualquiera de nosotros que haya jugado alguna vez a las damas entiende que ahora, después de saber que existe una estrategia para ganar siempre o, al menos, para no perder nunca, ¿qué sentido tiene jugar entonces? Hay más preguntas que surgen pero creo que vale la pena poner atención en el hecho de que el hombre inventó a lo largo de la historia juegos, pasatiempos, desafíos a vencer. No creo que quien inventara el juego de las damas haya tenido la idea de que algún día habría un grupo de personas que pensaría cómo diseñar un camino para ganar siempre. Más aún, ¿ese inventor sabría que el juego que ofrecía al mundo tenía una relación tan fuerte con la matemática? “Tragamonedas” describe otra de las fuertes atracciones que tenemos los humanos: el juego. ¿Cómo hacer para derrotar al azar? ¿Cómo enriquecerse con un golpe de suerte? ¿Cómo ser más “inteligente” que las máquinas tragamonedas? En algún sentido, este segmento del libro invita a mirar lo que hacen los que diseñan y fabrican estas máquinas. Nosotros pensamos en “ganar dinero fácil”. Ellos, en ganarnos por cansancio y constancia. Habrá que decirlo una vez más: el casino gana siempre.

Siguiendo con el juego, “Apuestas en el casino” invita a reflexionar sobre un problema que podría plantearse en la vida real. Supongamos que uno está dispuesto a tirar una moneda diez veces y, en cada tirada, arriesga la mitad del dinero que le queda. Si yo le advirtiera que usted va a ganar seis de las diez veces, ¿le conviene jugar? Y si en lugar de tirar la moneda diez veces, la arrojáramos al aire cien veces y yo le dijera que va a ganar 55 de esas cien, usted, ¿jugaría o no? Las respuestas son —creo — sorprendentes y, como en muchos otros casos, atentan contra la intuición. Problemas como estos sirven para entrenarnos para cuando uno tenga que tomar decisiones en la vida cotidiana. Por eso pensar la solución es mucho más importante que alcanzarla.

“La matemática en Finlandia” ofrece una visión de lo que podría ser si cada país decidiera dar una mejor educación a sus ciudadanos. En todo caso, demuestra que se puede. El problema no sólo está en qué se enseña, sino también en quién lo enseña. Finlandia es un país pequeño pero sus políticas de Estado en cuanto a la inversión en educación y ciencia invitan al mundo a mirar hacia allá y preguntarles no sólo cómo hacen sino cómo hicieron.

“El tránsito y la matemática” describe lo que sucede con el tránsito en las grandes urbes. Cada vez la situación es más caótica. ¿Qué hacer? ¿Quién diseña redes de alimentación de las zonas más pobladas al comienzo del día y de desagote cuando anochece? ¿Qué participación debería tener la matemática? ¿Por qué algunas sociedades son más respetuosas que otras? Por supuesto que no es un problema sencillo de resolver, ni mucho menos, pero de eso se trata, de juntar todas las ramas que la ciencia ofrece para mejorar la calidad de vida de los habitantes. Y como queda claro a lo largo de las distintas historias, la matemática es central en casi todas ellas.

Por supuesto, nadie puede transitar por la vida real sin tropezarse cada tanto con un “Embustero”. Y de eso se trata la historia que lleva ese título. Es bueno estar preparado para no dejarse tentar por lo que parece a su favor versus lo que realmente está pasando sin que usted lo advierta. Dicho de otra manera, hay gente que se gana la vida engañando incrédulos como yo (y espero que no como usted) que nos ofrece ganar algún dinero o una apuesta fácil que pareciera que nos favorece, pero si uno pudiera leer la letra chica de lo que dice la Teoría de Probabilidades o lo que no se ve, no solamente dudaría en apostar y/o jugar, sino que directamente no lo haría.

“Regresión a la media” aborda algunos temas que están en el imaginario popular como personas que tienen o bien mucha suerte o mucha mala suerte. La matemática llega en socorro de los que realmente quieren entender los fenómenos de la vida cotidiana sin apoyarse en leer horóscopos o invocar a los astros. Por supuesto que no es un artículo exhaustivo, ni mucho menos, pero tampoco lo pretendo. Nadie va a ser un experto en el tema después de leerlo, pero sí saldrá con una idea o noción que quizás no tenía antes, y le permitirá rebatir con mayor fundamento lo que escucha o lee. Sería bueno que este tema fuera de consumo habitual entre los periodistas y comunicadores de manera de poder ilustrar mejor a los lectores o a quienes miramos televisión en forma cotidiana.

El “Problema del basketball en Sausalito, con Alicia, Peter Winkler y Ginóbili” me lo contó Alicia Dickenstein en ese pequeño pueblito que está enfrente del Golden State Bridge, uno de los dos puentes más importantes del área de San Francisco. Como involucraba al basket y a la matemática, me atrapó de inmediato. El resumen es el siguiente: si un jugador ha convertido en su carrera el 77% de sus tiros libres y al finalizar la presente temporada incrementó ese porcentaje a un 83%, ¿tuvo que haber habido algún partido en el que al convertir un tiro libre lo puso exactamente en un 80%? Es decir, ¿hubo algún encuentro en el que antes de empezar llevaba menos de un 80% pero, dentro del partido, al embocar uno estuvo exactamente en un 80%? Por supuesto, mi intuición era equivocada (no importa acá cuál era porque prefiero que usted se entretenga al llegar a ese problema sin estar influido por mis conjeturas). En todo caso, quiero decir acá que es un problema precioso.

“El puente flexible” invita al asombro porque se trata de determinar hasta qué altura se elevará un puente construido con un material lo suficientemente flexible de modo que cuando se dilate por el calor no se fracture. Hasta que uno no hace las cuentas (que involucran una aplicación bien inmediata del famoso teorema de Pitágoras) no hay forma de convencerse. Vale la pena armarse de paciencia y dedicarle un rato.

“Cómo decidir educadamente” muestra la importancia de hacer una lectura adecuada de los datos. Muchas veces, enfrentados a una situación en la que hay que tomar decisiones, “las apariencias… engañan”, y por eso, “las matemáticas… ayudan”. Mi idea con este ejemplo es exhibir estas supuestas anomalías y aprovechar para enriquecernos intelectualmente. Es un problema sencillo, pero muy esclarecedor.

Por último, “Un reloj y la curiosa manera de interpretar los números”, es un ejemplo simpático de cómo la utilización creativa de las operaciones más elementales de la aritmética le permitieron a alguien diseñar un reloj de pared muy atractivo. ¿Quién dijo que la matemática era aburrida? Eso sí, para poder leer la hora es necesario poder descubrir cada uno de los doce números que aparecen inscriptos en el reloj.

Tabla de Contenido
Dedicatoria
Agradecimientos
Prólogo
1. Vida real
2. Estrategias
3. Cartas
4. Azar y probabilidades
5. Aritmética
6. Lógica
7. Miscelánea
Fuente: Adrián Paenza